Enhanced catalytic activity of MCM-41-grafted aluminium isopropoxide in MPV reductions

R. Anwander,*a† C. Palm,b G. Gerstberger,a O. Groeger and G. Engelhardtb

^a Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany

Aluminium alkoxide moieties are grafted onto purely siliceous mesoporous MCM-41 *via* siloxide linkages, producing materials which reveal enhanced catalytic activity in the MPV reduction of cyclic ketones; nitrogen physisorption and ²⁷Al MAS NMR spectroscopy are applied to characterise the catalytically active hybrid systems.

The potential of aluminium reagents, in particular 'Al(OPrⁱ)₃', in Meerwein–Ponndorf–Verley (MPV) reductions and Oppenauer oxidations is well documented.^{1,2} Although these transformations formally proceed catalytically, an excess of the aluminium compound is commonly required.³ Heterogeneously performed MPVO reactions utilising, for example, oxidic or zeolitic materials have also been reported to cope better with catalyst separation.^{4,5} Recently, we and others envisaged the mesoporous silicate MCM-41 as a versatile support material for metalorganic moieties.^{6,7} As part of this program, we present our preliminary findings on the catalytic MPV reduction of 4-*tert*-butylcyclohexanone mediated by grafted aluminium alkoxide species, including a detailed ²⁷Al MAS NMR study.

MCM-41-supported aluminium isopropoxide **2** was initially prepared according to a one-step solution impregnation by contacting Al(OPrⁱ)₃ and MCM-41 **1** in *n*-hexane.‡,§8.9

Assuming a monofunctional surface reaction, a ligand/metal ratio of ca. 2.0 can be derived for material 2 from elemental analysis (Table 1). Furthermore, an aluminium surface coverage of ca. 1.3 Al nm⁻² can be calculated from the metal content and the BET surface area of material 1 (1059 m² g⁻¹). A considerable amount of unreacted isolated silanol groups is still present after the grafting procedure as indicated by the ν (OH) vibration mode at 3695 cm⁻¹ in the IR spectrum. Al(OPrⁱ)₃ immobilisation in the mesopores of material 1 drastically decreases the pore volume and pore diameter as revealed by nitrogen physisorption (Table 1). However, the obtained adsorption/desorption isotherm is still of type IV.

We found that careful drying of the solvent isopropanol (= reductant) significantly increased the catalytic activity of Al(OPr¹)₃ in this MPV reduction (Table 2, run 1 vs. 2). In

Table 1 Analytical data, pore volume and pore diameter

	Elemental	analysis b		
Sample ^a	wt.% C	wt.% Al	$V_{\rm p}^{c}/{\rm cm}^{3}~{ m g}^{-1}$	$d_{\mathrm{p,max}}$ d/nm
1	_	_	0.89	2.8
2	15.61	6.2	0.33	1.75
2a	8.61	6.6	0.46	2.0
$2\mathbf{b}^e$	10.39	6.9	0.45	2.0
3	9.97	2.5	0.35	1.7
4	9.89	2.5	0.40	1.85

 $[^]a$ Pretreatment temperature: 250 °C, 3 h, 10⁻³ Torr for 1; 100° C, 3 h, 10⁻³ Torr for 2a, 2b and 4; 25 °C, 3 h, 10⁻³ Torr for 2 and 3. b Al by ICP analysis. c BJH desorption cumulative pore volume of pores between 1.5 and 4.5 nm diameter. d Pore diameter according to the maximum of the BJH pore size distribution calculated form the desorption branch. e Recovered material from run 5 (Table 2).

contrast, material **2** exhibits dramatically enhanced catalytic activity, producing 86% of the 4-*tert*-butyl cyclohexanol isomers after 5 h even at ambient temperature (run 5). At 80 °C material **2** afforded almost quantitative conversion after 30 min (run 6).¶¹0 Hybrid material **2** could easily be separated from the reaction mixture of run 5 by centrifugation. After washing with HOPr¹ the catalytic activity of the recovered solid material (**2b**) remained unchanged (run 7). The combined HOPr¹ fractions showed no further activity upon addition of new substrate. We also found no catalytic activity for parent material **1** (run 3).

For comparison, recent studies by others revealed that H-MCM-41 and Na-MCM-41 (Si/Al = 15, activation temperature 450 °C) gave only 10% conversion of 4-tert-butylcyclohexanone after 6 h at 80 °C.⁴ A zirconium hybrid system obtained according to the synthesis sequence: silica + $Zr(CH_2Bu^t)_4$ + HOPri, showed 75% conversion of cyclohexanone after 20 h at 80 °C.⁵

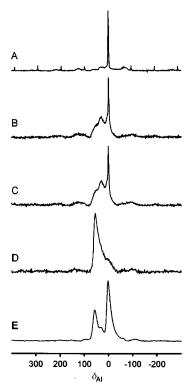

The efficiency of the MPV reduction is known to depend on the Lewis acidity of the metal center and the ligand exchange ability.^{1,2} These factors are markedly affected by the type of (co-)ligand and co-ordination geometry at the metal center. In order to gain further insight into the co-ordination geometry of the catalytically active species, a detailed ²⁷Al MAS NMR study was performed. The ²⁷Al MAS NMR spectrum of Al(OPr¹)₃ shows a sharp resonance at 0 ppm typical of octahedral aluminium, accompanied by weak and broad signals

Table 2 Catalytic activities of aluminium isopropoxide species in the MPV reduction of 4 *tert*-butylcyclohexanone^a

	Precatalyst	Conversion (%) (trans:cis)		
Run		5 h	24 h	
1 ^b	[Al(OPri)3]	<1	7 (4.0)	
2	[Al(OPri)3]	16 (2.1)	59 (2.1)	
c	1	_ ` ′	<1	
d	1 (silylated)	_	< 1	
	2	86 (2.3)	>99 (2.2)	
je	2	>99 (2.1)	>99 (2.2)	
,	2b	85 (2.3)	>99 (2.3)	
3	4	88 (2.6)	>99 (2.6)	

^a Conditions: 25 g HOPrⁱ, 0.1 g *n*-nonane, 0.78 g ketone, *ca*. 5 mol% of precatalyst, 25 °C (mol% = 100 n_{aluminium}/n_{substrate}). ^b HOPrⁱ not predried. ^c 0.20 g mesoporous material. ^d 0.20 g SiMe₃-silylated material. ^e 80 °C.

b Institut für Technische Chemie I, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Fig. 1 ²⁷Al NMR spectra: (A) Al(OPrⁱ)₃ as received from Aldrich; (B) material **2**; (C) recovered material **2a**; (D) material **4**; (E) material **2** exposed to air for several days (completely hydrolysed); all hybrid materials were evacuated for 5 h at 25 °C, 10^{-2} Torr prior to measurement

at about 60 and 30 ppm attributable to distorted 4- and 5-coordinated aluminium (Fig. 1A).||11 In contrast, the spectrum of hybrid material 2 (Fig. 1B) exhibits, besides the sharp resonance at 0 ppm (15%), an intense broad signal pattern in the range of 75 to -25 ppm, clearly indicating the formation of additional aluminium sites. Deconvolution by computer simulation (Bruker WINFIT) yields a Gaussian line at 54 ppm (25%) of regular tetrahedral aluminium sites, and a quadrupolar line shape (δ_{iso} = 49, QCC = 7.5 MHz, 60%), typical of heavily distorted 4-co-ordinated aluminium.¹² Interestingly, this signal pattern did not change after the first catalytic run (material 2a, Fig. 1C), proving the preservation of the lower-co-ordinated, surface constrained and hence stronger Lewis acidic aluminium centres which are proposed to contribute to the enhanced catalytic activity of material 2. This is in accord with a previous kinetic study.¹³ where the 'melt' form of Al(OPri)₃ which consists of the predominantly trimeric form with 4- and 5-coordinated aluminium centres was found to be 103 times more reactive in MPV reductions than the tetrameric form containing 4- and 6-co-ordinated aluminium.

This finding could be corroborated by applying a synthetic approach which exclusively produces lower-co-ordinated aluminium surface species. Novel 4-co-ordinate Al[N(SiH-Me₂)₂]₃·thf was reacted with material **1** to yield material **3** *via* a siloxide formation/silylation sequence (*ca.* 0.5 Al nm⁻²).**6 Subsequent treatment of hybrid material **3** with a slight excess of HOPrⁱ afforded material **4** (Table 1). The pore texture of material **4** is roughly comparable to that of material **2**, supporting a disruption of the tetrameric form of Al(OPrⁱ)₃ upon grafting. The ²⁷Al MAS NMR spectrum of material **3** revealed poor signal intensity (not shown in Fig. 1), probably due to the formation of surface-docked alumoxo-silylamide sites in highly distorted co-ordination environments.¹⁴ Upon silylamide/HOPrⁱ ligand exchange the co-ordination geometry at the aluminium center is markedly relaxed. The resulting ²⁷Al MAS

NMR spectrum now features a broad, asymmetric signal with a maximum at 55 ppm, indicating the presence of predominantly 4- and 5-co-ordinated aluminium species (Fig. 1D). Material 4 displayed catalytic activity comparable to that of material 2 (run 8). Although silylated 1 was shown to be catalytically inactive (run 4), the partly silylated surface of material 4 may affect its catalytic performance by hydrophobicity effects. 15 Spectrum E in Fig. 1 shows the 27Al resonances of a completely hydrolysed sample of material 2. The three overlapping signals of tetrahedral (58 ppm), 5-co-ordinated (34 ppm) and octahedral (0 ppm) aluminium sites are now clearly visible.

We have shown that MCM-41-grafted aluminium isopropoxide is an efficient catalyst in the MPV reduction of 4-tert-butylcyclohexanone. A detailed ²⁷Al MAS NMR study revealed that the enhanced catalytic activity can be ascribed to the formation of low-co-ordinated (4-, 5-), geometrically distorted aluminium species. Surface confinement prevents the aluminium alkoxide moieties from self-association, while the silicate material simultaneously acts as an electron-withdrawing matrix.

We thank the Deutsche Forschungsgemeinschaft for generous support.

Notes and References

- † E-mail: anwander@arthur.anorg.chemie.tu-muenchen.de
- ‡ All manipulations were performed in a nitrogen-filled glovebox (MB Braun MB150B-G-II) as described elsewhere.⁶ Purely siliceous MCM-41 was prepared according to the literature and dehydrated at 280 °C, 10^{-5} Torr prior to use. All of the resulting hybrid materials were synthesized in n-hexane at ambient temperature in 24 h and subsequently washed several times with n-hexane to remove unreacted educt compounds.
- § A similar post-synthetic aluminium incorporation was recently applied to produce mesoporous aluminosilicates.9
- \P Although it was shown earlier that addition of Al(OPrⁱ)₃ to alumina significantly enhanced its catalytic activity at 80 °C, this phenomenon was not further explained.¹⁰
- \parallel The solution spectrum of Al[(μ -OPrⁱ)₂Al(OPrⁱ]₃ in toluene at 25 °C gives a similar spectrum with the very broad signal of the 4-co-ordinated Al disappearing into the base line.¹¹
- ** The formation of both surface bonded metal silylamide ' $[\mu SiO]_{x^-}$ Al $[N(SiHMe_2)_2]_y$ ' $[\nu(SiH) = 2102 \text{ cm}^{-1}]$, silylated species ' \equiv SiO-SiHMe₂' $[\nu(SiH) = 2151 \text{ cm}^{-1}]$ and the consumption of all surface silanol groups was revealed by FTIR spectroscopy.
 - 1 A. L. Wilds, Org. React., 1994, 2, 178.
- 2 C. F. de Graauw, J. A. Peters, H. van Bekkum and J. Huskens, *Synthesis*, 1994, **10**, 1007.
- 3 See for recent examples: K. Nishide, Y. Shigeta, K. Obata and M. Node, J. Am. Chem. Soc., 1996, 118, 13103; M. Fujita, Y. Takarada, T. Sugimura and A. Tai, Chem. Commun., 1997, 1631.
- 4 E. J. Creyghton, S. D. Ganeshie, R. S. Downing and H. van Bekkum, J. Mol. Catal. A, 1997, 115, 457 and references therein.
- 5 P. Leyrit, C. McGill, F. Quignard and A. Choplin, J. Mol. Catal. A, 1996, 112, 395.
- 6 R. Anwander, O. Runte, J. Eppinger, G. Gerstberger, E. Herdtweck and M. Spiegler, J. Chem. Soc., Dalton Trans., 1998, 847.
- 7 S. O'Brien, J. Tudor, S. Barlow, M. J. Drewitt, S. J. Heyes and D. O'Hare, *Chem. Commun.*, 1997, 641 and references therein.
- 8 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, *J. Am. Chem. Soc.*, 1992, 114, 10 834.
- 9 R. Mokaya and W. Jones, *Chem. Commun.*, 1997, 2185.
- 10 L. Horner and U. B. Kaps, Liebigs Ann. Chem., 1980, 192.
- 11 J. W. Akitt and R. H. Duncan, J. Magn. Reson., 1974, 15, 162.
- 12 G. Engelhardt and D. Michel, High resolution solid-state NMR of silicates and zeolites, Wiley, New York, 1987.
- 13 V. J. Shiner, Jr. and D. Whittaker, J. Am. Chem. Soc., 1969, 91, 394.
- 14 R. Anwander, C. Palm, O. Groeger and G. Engelhardt, *Organometallics*, 1998, 17, 2027.
- 15 T. Tatsumi, K. A. Koyano and N. Igarashi, *Chem. Commun.*, 1998, 325.

Received in Bath, UK, 14th April 1998; 8/02996B